An Investigation into Multifaceted Mechanisms of Action of Allantoin in Wound Healing

Amy Paller¹, **Ron Nardi**², Hung Do³, Allen Reha³, Christopher Viereck³, Jeffrey Castelli³, Jay Barth³

¹Northwestern University Feinberg Medical School, Chicago, IL, USA; ²Scioderm - An Amicus Therapeutics Company, Durham, NC, USA; ³Amicus Therapeutics, Inc., Cranbury, NJ, USA

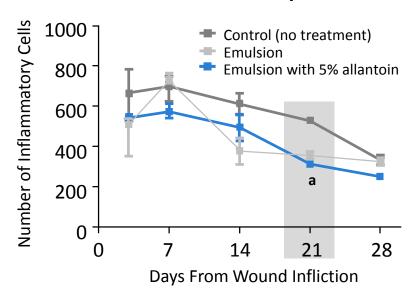
Conflict of Interest:

AP: Scioderm consultant, honoraria, investigator, grants.

RN: Consultant to Amicus. HD, AR, CV, JC, JB: Amicus employee

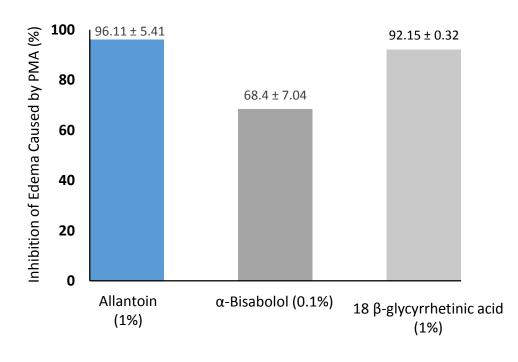
Background

- Allantoin is a heterocyclic organic compound produced by animals, bacteria, and plants
- While different allantoin-containing preparations have been used clinically to study its therapeutic effects in wound healing, its mechanisms of action are not known with certainty


Methods

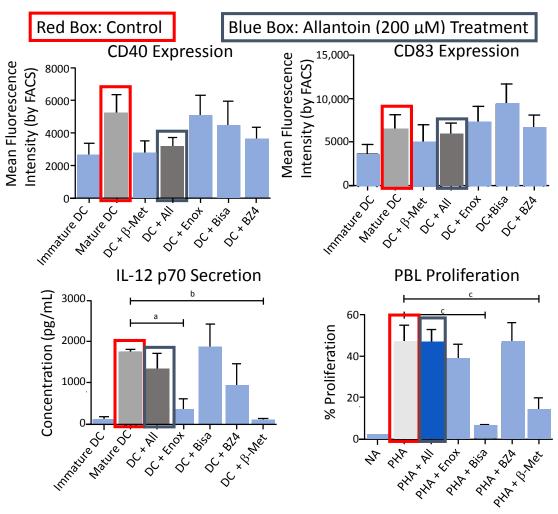
- Systematic literature search for preclinical and clinical studies to further understand the mechanism of action (MOA) of allantoin in the context of wound healing
- The following search terms were used: wound, burn, scar, pruritus, anti-inflammatory, antioxidant, fibroblast, collagen, antifungal, antimicrobial, necrotic, and keratolytic
- ~100 preclinical studies (in vitro and animal models) and ~30 clinical studies were found focusing on MOA impacting the wound healing process

Anti-Inflammatory Effects


- Allantoin 5% emulsion resulted in fewer inflammatory cells in wounds compared with no treatment at all time points (Wistar rat model).
- Allantoin 1% treatment resulted in nearly complete inhibition of edema caused by chemical burn with phorbol myristate acetate (PMA) applied to mouse ear.

Number of Inflammatory Cells in a Rat Wound Model by Treatment

 ^{a}P <0.05 for emulsion containing 5% allantoin compared with control group.


% Reduction of Edema Caused by PMA

Anti-Inflammatory Effects

 In cell cultures, allantoin 200 μM led to downregulation of maturation surface molecule CD40 and dendritic cell maturation marker CD83, and a slight increase in the secretion of tumor growth factor (TGF)-β

Allantoin Reduced Expression of Pro-inflammatory Markers and Cytokines in Cell Culture Assays

^a*P*<0.05; ^b*P*<0.01; ^c*P*<0.001.

TGF- β , tumor growth factor beta; FACS, fluorescence-activated cell sorting; DC, dendritic cells; DC + B-met, DCs incubated with β -methasone (50 ng/mL); DC + All, DCs incubated with allantoin (200 μM); DC + Enox, DCs incubated with enoxolon (50 μm); DC + Bisa, DCs incubated with bisabolol (0.01%); DC + BZ4, DCs incubated with benzophenone-4 (0.01%); PHA, phytohemagglutinin; ELISA, enzyme-lined immunosorbent assay. Frikeche J et al. *Arch Dermatol Res.* 2015;307:211-218.

Keratolytic Activity

• In patients with psoriasis, 14-days open-label treatment with allantoin decreased disease manifestations including a reduction in hyperkeratosis

Effects of Allantoin (2% w/w) in Psoriasis

Example Study Results: Effect of Allantoin Preparation With

Lanacolic Vehicle on Hyperkeratosis¹

Degree ^a of hyperkeratosis	+++	++	+	0
Patients prior to therapy, n	9	6	0	0
7 days post-treatment	3	7	5	0
14 days post-treatment	0	6	2	7

^aDegree expressed as: + + + (very expressed), + + (moderately expressed degree), + (poorly expressed), 0 (not expressed).

1. Cajkovac M et al. Pharmazie. 1992;47:39-43;

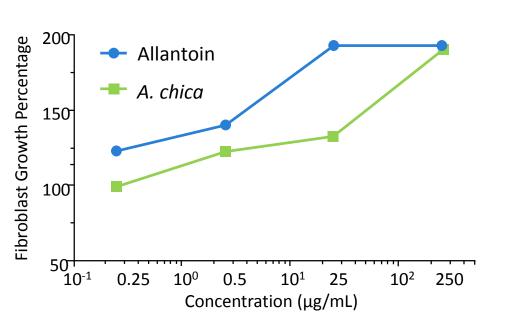
Anti-microbial Effects

- Allantoin exhibited antibacterial activity against many bacterial strains¹ and exhibited antifungal and antiviral activity against several strains of microorganisms in vitro²
- Allantoin in a solid lipid nanoparticle containing copaiba oil resulted in potent antifungal activity³

Antibacterial Activity Tested Against Standard and Isolated Strains of Microorganisms¹

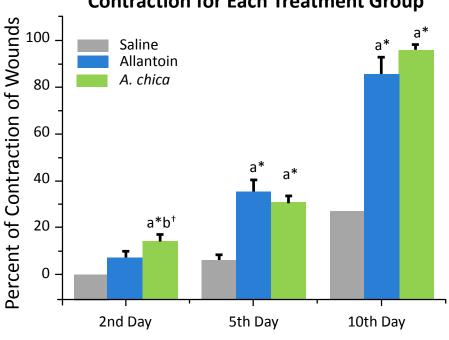
	Escherichia coli MIC (μg/mL)		Pseudomonas aeruginosa MIC (μg/mL)		Proteus mirabilis MIC (μg/mL)		Klebsiella pneumoniae MIC (μg/mL)	
Compound	ATCC 35218	Isolated strain ESβL+	ATCC 10145	Isolated strain	ATCC 7002	Isolated strain ESβL+	RSKK 574	Isolated strain ESβL+
Allantoin	8	128	4	32	8	128	8	128
Ampicillin (reference)	2	>128	-	-	2	>128	2	>128
Ofloxacin (reference)	0.12	0.5	1	64	<0.12	1	<0.12	0.5

	Acinetobacter baumannii MIC (μg/mL)		Staphylococcus aureus MIC (µg/mL)		Enterococcus faecalis MIC (μg/mL)		Bacillus subtilis MIC (μg/mL)	
Compound	RSKK 02026	Isolated strain	ATCC 25923	Isolated strain MRSA	ATCC 29212	Isolated strain	ATCC 6633	Isolated strain
Allantoin	2	64	16	>128	8	128	8	16
Ampicillin (reference)	2	>128	<0.12	>128	0.5	>128	0.12	0.5
Ofloxacin (reference)	0.12	64	0.25	64	1	32	-	-


MIC, minimum inhibitory concentration.

1. Özçelik B et al. Pharm Biol. 2011;49:396-402. 2. Özçelik B et al. Pharm Biol. 2011;49:396-402. 3. Svetlichny G et al. Pharmazie. 2015;70:155-164.

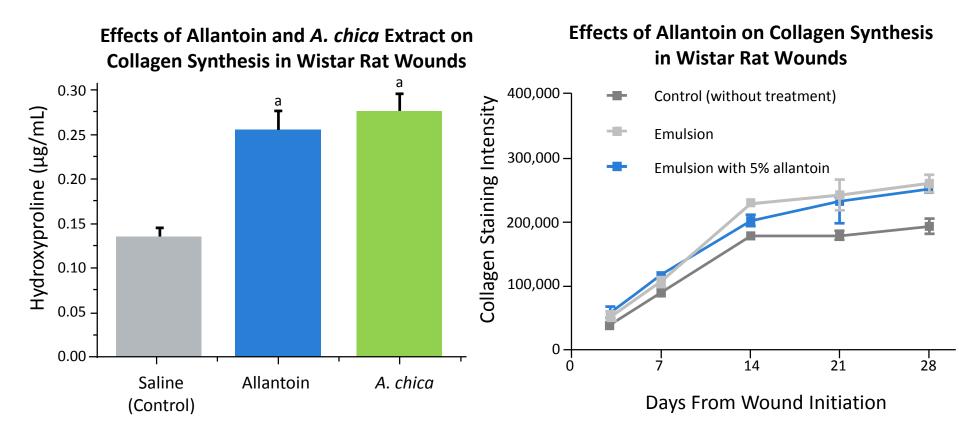
Fibroblasts


- Allantoin and crude extracts of allantoin-containing Arrabidaea chica added to human fibroblast cell cultures demonstrated a concentration-dependent increase in fibroblast proliferation
- Allantoin and A. chica extract significantly improved surgically induced wound healing in Wistar rats by days 5 and 10 compared with saline control

Concentration-Dependent Fibroblast Growth
Percentage Induced by Allantoin and A. chica Extract

Jorge MP et al. J Ethnopharmacol. 2008;118:361-366.

Wound Healing Observed as Percent of Contraction for Each Treatment Group



^aDifferent from saline; ^bdifferent from allantoin (100 mg/mL). *P<0.001 $^{\dagger}P$ <0.01.

Jorge MP et al. *J Ethnopharmacol*. 2008;118:361-366.

Collagen Synthesis

- Allantoin and A. chica extract improved collagen synthesis in the wounds of Wistar rats analyzed 11 days after injury
- Allantoin 5% emulsion and the emulsion alone increased collagen stimulation compared with control (without treatment) at all times

^aP<0.001 compared with fibroblast control group. Jorge MP et al. *J Ethnopharmacol*. 2008;118:361-366.

Araújo LU et al. Acta Cir Bras. 2010;25:460-466.

Summary

Anti-inflammatory Effects	Keratolytic	Antimicrobial	Fibroblast Proliferation	Collagen Synthesis
 Allantoin reduced chemotaxis of inflammatory cells into rat wounds Allantoin application prevented the edema associated with chemical burns in mice In cell culture, allantoin decreased immune activity and inhibited cytokine secretion 	 In patients with psoriasis, allantoin decreased disease manifestations In vitro, allantoin dispersed psoriatic scales into solution 	 Allantoin showed in vitro antiviral, and antifungal activity based on 2 separate studies 	 Allantoin demonstrated increased fibroblast proliferation in cell culture assays Allantoin increased tissue regeneration and epithelialization in rat wound models 	 Allantoin demonstrated increased collagen synthesis in cultured fibroblast Histology of rat wound models demonstrated increased collagen synthesis

- Studies used different formulations of allantoin and there was a lack of information on the stability or dermal penetration of allantoin
- Additional research is warranted to further characterize clinically relevant mechanisms of action in human skin and to determine the relative role of these various mechanisms in wound healing